Elizabeth (Liz) Lee

E. Lee
Professor

Email:

Phone:

519-824-4120 x53360

Education:

B.Sc. Agronomy, University of Minnesota;
M.Sc. Plant Breeding and Cytogenetics, Iowa State University;
Ph.D. Genetics, University of Missouri

Location:

Crop Science Building

Room:

220 CRSC

For nearly two decades my research has been examining the genetic architecture underlying quantitative traits in maize exploiting both “mutant” and “native” forms of genetic variation in biochemical pathways, kernel quality traits, grain yield, and heterosis.  Our approach is best described as quantitative developmental genetics.  As a body of work, what has emerged is an understanding that: (1) there are multiple avenues to creating and accumulating genetic variation to alter a phenotype (e.g., Burt et al. 2011; Liu et al. 2012b; Khanal et al. 2011); (2) environment can have a substantial impact on the expression of this genetic variation (e.g., Singh et al. 2011; Lee et al. 2012); (3) the germplasm pool from which the genetic variation is sampled impacts the genetic architecture (e.g., Lee et al. 2009a); (4) and the suggestion that the trait under selection is what constrains these options.

Model Quantitative Traits

This research examines quantitative traits in the context of metabolic pathways, specifically the flavonoid, carotenoid and starch synthesis pathways. For each one of these pathways the biochemical steps are well defined, products can be easily followed, a wealth of mutations exists for many of the steps, and there is abundant functional variation. Early work with the flavonoid pathway demonstrated the utility of this approach for understanding how competing biological processes ‘appear’ as interactions, how ‘size’ of the QTL is related to its biological basis and is relative to the other QTLs segregating in the population. Recently, we have used the flavonoid pathway QTLs to test the robustness of QTLs across germplasm pools (Lee et al., 2008) and have found that QTL behavior (i.e., dominant, recessive, co-dominant) and association with the trait varies across germplasm.

The carotenoid pathway (Shelp collaboration) is novel, as the components of interest in this pathway are intermediates (e.g., lutein, zeaxanthin, ß-carotene) (Burt et al., 2010; 2011a, 2011b). Consistent with Lee et al., 2008, we found no predictive power of ‘diagnostic markers’ when germplasm sources varied (Burt et al., 2011b). Heterosis, specifically overdominance for lutein, was studied with overdominance for lutein being due to a more favourable LycE allele coupled with favourable alleles that elevated carotenoid pathway flux (Burt et al., 2011a). The carotenoid research became more applied with the development of 1st and 2nd generation high carotenoid (HiC) inbred lines (Burt et al., 2011b; 2013) and a proof-of-concept study to determine the utility of incorporating HiC corn into laying hen feed to produce high carotenoid eggs (Burt et al., 2013).

The starch synthesis pathway (Emes & Tetlow collaboration) examines another dynamic, protein-protein interactions and how they may or may not result in phenotypic variation (Liu et al. 2009, 2012a, 2012b; Subasinghe et al. 201-). Specifically we have focused on an enzyme called starch branching enzyme 2b (Sbe2B), which in maize is encoded by a gene called amylose extender 1 (ae1).  While there are numerous mutant alleles of ae1, our group has primarily studied 2, ae1-ref and ae1-Elmore.  However recent work includes other ae1 alleles (ae1-1979-7, ae1-ems, Ae1-5180::Mu, & ae1-663-CT) and 2 alleles of the endosperm-specific starch synthase IIa isoform (SSIIa) encoded by the gene sugary2 (su2) (su2-ref & su2-1981).  The allele collection is interesting as pairs of mutant alleles (ae1-ref & ae1-Elmore; su2-1981 & su2-ref) result in very different effects.  ae1-ref and su2-1981 are null alleles resulting in no mRNA or protein product present.  These alleles result in very novel protein-protein interactions of the starch enzymes.  ae1-Elmore and su2-ref are not null alleles, rather they result in catalytically inactive forms of the protein.  And interestingly these catalytically inactive forms result in a wild-type protein-protein interaction, yet a visibly altered kernel phenotype consistent with that of the null alleles.

Physiology, Genetics and Development Underlying Grain Yield

This research area encompasses several themes: (1) grain yield “physiological process pathway” (Lee and Tollenaar, 2007), (2) heterosis, (3) GxE, (4) stress tolerance (i.e., density, red/far-red, temperature), and (5) development (i.e., ear, rate of leaf appearance, flowering time). “Physiological process pathway” incorporates many of the features of the model pathways discussed above. Consistent with Lee et al., 2008 and Burt et al., 2011b, grain yield QTL identification in elite germplasm is not fruitful. Grain yield QTLs are strongly influenced by the environment, are associated with small effects and epistatic interactions, and do not co-segregate with “physiological processes” (Singh et al., 2011; 201-).

Subtle differences in the dynamics of heterosis on plant growth & development, and ear growth & development leads to substantial heterosis later in the lifecycle (Smith and Lee, 201-a).  Modest amounts of genetic variation can result in substantial heterosis for kernel number (Lee et al., 2007), with heterosis resulting in a greater proportion of normally developed florets (Smith and Lee, 201-b). Florets towards the tip of the mature ear initial acquire a masculine appearance, with the number of normally developed florets being indicative of number of kernels at harvest. And finally, number of normally developed florets is influenced by plant density as increasing plant density reduces the number of normally developed florets. (Smith and Lee, 201-b; G. Moum, MSc research)

Genotype-by-environment (GxE) interactions alter the magnitude of genetic variation (Singh et al., 2011), expression of grain yield QTLs (Singh et al., 2011), genetic correlations among traits (Lee et al. 2012), and ear initial development (G. Moum, MSc research).  GxE effects on grain yield appear to be heavily influenced by relative soil moisture stress particularly during the developmental period bracketing flowering and sub-optimal seasonal heat unit accumulation (M. Hooyer, MSc thesis).

Stress tolerance in maize has been the major trait that breeders have unknowingly improved during the past 7 decades, primarily as a consequence of selecting at higher plant population densities. Stunningly, this improvement in stress tolerance cuts across many diverse stresses – density, temperature, nitrogen, shading, water, herbicides, etc.  The recent work in this area is through a collaboration with C. Swanton examining differences in response to light quality with and without the presence of a secondary stress (Page et al., 2009, 2010a, 2010b).

Courses:

CROP*4260 Crop Science Field Trip
PLNT*6400 (W) Seminar
PLNT*6450 Plant Agriculture International Field Trip

Relevant Links:

Selected Publications:

Recent/submitted publications - Model Quantitative Traits

  • Subasinghe, R., F. Liu, U. Polack E.A. Lee and I. Tetlow. (2014).  Multimeric states of starch phosphorylase determine protein-protein interactions with starch biosynthetic enzymes in amyloplasts. Plant and Cell Physiology. 83: 168-179.
  • Lee, E.A., J.M. Staebler, C. Grainger and M.E. Snook. (2009).  Robustness of QTLs across germplasm pools using a model quantitative trait. Genome. 52: 39-48.
  • Liu, F., A. Makhmoudova, E.A. Lee, R. Wait, M.J. Emes and I.J. Tetlow. (2009). The amylose extender mutant of maize conditions novel protein–protein interactions between starch biosynthetic enzymes in amyloplasts. Journal of Experimental Botany. 60 (15): 4423-4440.
  • Liu, F., N. Romanova, E.A. Lee, R. Ahmed, M. Evans, E.P. Gilbert, M.K. Morell, M.J. Emes, and I.J. Tetlow.  2012b. Glucan affinity of starch synthase IIa determines binding of starch synthase I and starch branching enzyme IIb to starch granules. Biochemical Journal. DOI: 10.1042/BJ20120573.
  • Liu, F., Z. Ahmed, E.A. Lee, E. Weber, Q. Liu, R. Ahmed, M.K. Morell, M.J. Emes and I.J. Tetlow. (2012). Allelic variants of the amylose extender mutation of maize demonstrate phenotypic variation in starch structure resulting from modified protein-protein interactions. Journal of Experimental Botany. 63 (3): 1167-1183. DOI: 10.1093/jxb/err341.
  • Burt, A.J., C.M. Grainger, J.C. Young, B.J. Shelp, and E.A. Lee. (2010). Impact of postharvest handling on carotenoid concentration and composition in high-carotenoid maize (Zea mays L.) kernels. Journal of Agricultural and Food Chemistry. 58: 8286–8292.
  • Burt, A.J., C.M. Grainger, B.J. Shelp and E.A. Lee. (2011). Heterosis for carotenoid concentration and profile in maize hybrids. Genome. 54 (12): 993-1004.
  • Burt, A.J., C.M. Grainger, M.P. Smid, B.J. Shelp, and E.A. Lee. (2011).  Allele mining in exotic maize germplasm to enhance macular carotenoids. Crop Science. 51: 991-1004.
  • Burt, A.J., L. Caston, S. Leeson, B.J. Shelp and E.A. Lee. (2013). Development and Utilization of High Carotenoid Maize Germplasm: Proof of Concept. Crop Science. 53: 554-563.

Intellectual property disclosed

  • HiC1 through HiC34, 34 1st generation HiC lines that have high levels of carotenoids (lutein or zeaxanthin) in the grain, disclosed 2013, from Burt et al. 2010, 2011a, 2011b.
  • HiC35 through HiC44, 10 2nd generation HiC lines that exhibit even higher levels of carotenoids in the grain and are in conventional commercial maize germplasm backgrounds, disclosed 2013, from Burt et al. 2013.

Recent/submitted publications - Physiology, Genetics and Development Underlying Grain Yield

  • Khanal, R.R., H. Earl, E.A. Lee and L. Lukens. (2011). Genetic architecture of flowering time and related traits in two early flowering maize lines. Crop Science. 51: 146-156.
  • Khanal, R., A. Navabi, E.A. Lee and L. Lukens. (201-). Crosses among three highly selected Zea mays germplasm pools generate adapted hybrids with little evidence of linkage drag. Crop Science. (accepted).
  • Singh, A.K., A. Chambers, M. Tollenaar and E.A. Lee. (201-). Defining maize grain yield QTL in terms of underlying physiological mechanisms.  Crop Science. (submitted).
  • Singh, A.K., T.K. Coleman, M.T. Tollenaar and E.A. Lee. (2011). Nature of the genetic variation in an elite maize breeding cross. Crop Science. 51: 75-83.
  • Reid, A., P.H. Sikkema, E.A. Lee, L. Lukens and C.J. Swanton. (201-). Delaying Weed Control Lengthens ASI; an Important Drought Tolerant Trait in Maize. Weed Science. (Submitted)
  • Page, E.R., W. Liu, D. Cerrudo, E.A. Lee and C.J. Swanton. (2011). Shade avoidance influences stress tolerance in maize. Weed Science. 59: 326-334.
  • Page, E.R., M. Tollenaar, E.A. Lee, L. Lukens and C.J. Swanton. (2010). Timing, effect, and recovery from intraspecific competition in maize (Zea mays L.). Agronomy Journal. 102:1-7.
  • Page, E.R., M. Tollenaar, E.A. Lee, L. Lukens and C.J. Swanton. (2010). Shade avoidance: an integral component of crop-weed competition. Weed Research. 50: 281-88.
  • Page, E.R. M. Tollenaar, E.A. Lee, L. Lukens and C.J. Swanton. (2009). Does the shade avoidance response underlie the critical period for weed control in maize (Zea mays L.)? Weed Research. 49: 563-571.
  • Tollenaar, M., E.A. Lee. (2011). Strategies for Enhancing Grain Yield in Maize. Plant Breeding Reviews. 34: 37-82.
  • Lee, E.A., J.A. Young, J.A. Frégeau-Reid, B.G. Good. (2012). Genetic architecture underlying kernel quality in food-grade maize. Crop Science. 52: 1561-1571.
  • Smith, N.C., E.A. Lee. (201-). Heterosis and growth in a developing maize plant. Field Crops Research. (Submitted).
  • Smith, N.C., E.A. Lee. (201-). Determination of sink size in maize: density effects on floret development and final kernel number. Field Crops Research. (Submitted)

Intellectual property disclosed

  • CG122 – from the single-seed descent population of CG60 x CG102, disclosed 2013, from Khanal et al. 2011; 201-.
  • CG121 – from the intermated population of CG60 x CG102, disclosed 2013, from Khanal et al. 2011; 201-.

Books

1)      Lee, Elizabeth A., and J. Andrew Robinson. (editors)  2013.  Introduction to Agri-Food Systems.  Pearson Custom Library. p.914.  ISBN 978-1-269-10115-8.


Publications

Chapters in books

2011

9)      M. Tollenaar and E.A. Lee.  2011.  Strategies for Enhancing Grain Yield in Maize.  In: Plant Breeding Reviews, vol.34, J. Janick (ed.) pp 37-82.

2009

8)      Lee, E.A., and W.F. Tracy.  2009.  Chapter 7: Modern Maize Breeding.  In: The Maize Handbook – Volume 2: History and Practice of Genetics, Genomics and Improvement, J.L. Bennetzen and S.C. Hake (eds.).  Springer-Verlag, New York. pp 141–160.

7)      Lee, E.A.  2010.  Chapter 17: Maize Oil.  In: Oil Crop Breeding /, J. Vollmann and I. Rajcan (eds.) Springer-Verlag, New York. pp 493–506.

2006

4)      Lee, E.A. and J.W. Dudley.  2006.  Chapter 8.   Plant breeding education.  In: Plant Breeding: The Arnel R. Hallauer International Symposium, K.R. Lamkey and M. Lee, eds., Blackwell Publishing, Oxford, UK. pp 120–126.

2004

6)      Lee, E.A.  2004.  Chapter 89. Maize: Genetics.  In: The Encyclopedia of Grain Science, C. Wrigley, C. Walker, and H. Corke, eds.  Academic Press. London. pp 191-204.

5)      Lee, E.A. and L.W. Kannenberg.  2004.  Chapter 87. Maize: Breeding.  In: The Encyclopedia of Grain Science, C. Wrigley, C. Walker, and H. Corke, eds.  Academic Press. London. pp 204–212.

3)      Tollenaar, M., and E.A Lee.  2004.  Chapter 2.  Genetic yield improvement and stress tolerance in maize. In: Physiology and Biotechnology Integration for Plant Breeding, H. Nguyen and A. Blum, eds. Marcel Dekker Inc., New York. 

1997

2)      Lee, E.A.  1997.  Hypoploids and hyperploids.  In:  Mutants of Maize, M.G. Neuffer, E.H. Coe, and S.R. Wessler, eds.  Cold Spring Harbor Press, Cold Spring Harbor, NY. (1 citation)

1)      Lee, E.A. and J.B. Beckett.  1997.  B-A chromosome translocations. In:  Mutants of Maize, M.G. Neuffer, E.H. Coe, and S.R. Wessler, eds.  Cold Spring Harbor Press, Cold Spring Harbor, NY.

Peer-reviewed journal publications

2013

54)    Durham, K.M., W. Xie, K. Yu, K.P. Pauls, E. Lee, and A. Navabi. 2013. Interaction of common bacterial blight quantitative trait loci in a resistant inter‐cross population of common bean.  Plant Breeding. DOI: 10.1111/pbr.12103.

51)    Burt, A.J., L. Caston, S. Leeson, B.J. Shelp, and E.A. Lee.  2013. Development and Utilization of High Carotenoid Maize Germplasm:  Proof of Concept.  Crop Science 53:554-563.

2012

52)    Liu, F., N. Romanova, E.A. Lee, R. Ahmed, M. Evans, E.P. Gilbert, M.K. Morell, M.J. Emes, and I.J. Tetlow.  2012b.  Glucan affinity of starch synthase IIa determines binding of starch synthase I and starch branching enzyme IIb to starch granules.  Biochemical J. DOI:10.1042/BJ20120573.

50)    Lee, E.A., J.A. Young, J.A. Frégeau-Reid, and B.G. Good.  2012. Genetic Architecture Underlying Kernel Quality in Food-Grade Maize.  Crop Sci. 52:1561-1571.

49)    Liu, F., Z. Ahmed, E.A. Lee, E. Weber, Q. Liu, R. Ahmed, M.K. Morell, M.J. Emes, and I.J. Tetlow.  2012a.  Allelic variants of the amylose extender mutation of maize demonstrate phenotypic variation in starch structure resulting from modified protein-protein interactions. Journal of Experimental Botany.  63:1167-1183. doi:10.1093/jxb/err341

2011

53)    E.R. Page, W. Liu, D. Cerrudo, E.A. Lee, and C.J. Swanton. 2011. Shade avoidance influences stress tolerance in maize.  Weed Science 59:326-334.

48)    Burt, A.J., C.M. Grainger, B.J. Shelp, and E.A. Lee.  2011a. Heterosis for carotenoid concentration and profile in maize hybrids.  Genome.  54(12):993-1004.

47)    Burt, A.J., C.M. Grainger, M.P. Smid, B.J. Shelp, and E.A. Lee.  2011b.  Allele mining in exotic maize germplasm to enhance macular carotenoids. Crop Sci. 51:991-1004.

46)    Singh, A.K., T.K. Coleman, M.T. Tollenaar, and E.A. Lee.  2011.  Nature of the genetic variation in an elite maize breeding cross.  Crop Sci. 51:75-83.

45)    Raja R. Khanal, Hugh Earl, Elizabeth A. Lee, and Lewis Lukens.  2011. Genetic architecture of flowering time and related traits in two early flowering maize lines.  Crop Sci. 51:146-156.

2010

44)    Andrew J. Burt, Christopher M. Grainger, J. Christopher Young, Barry J. Shelp, and Elizabeth A. Lee.  2010. Impact of postharvest handling on carotenoid concentration and composition in high-carotenoid maize (Zea mays L.) kernels. J. of Agric. Food Chem. 58:8286–92.

43)    Page, E.R., M. Tollenaar, E.A. Lee, L. Lukens and C.J. Swanton.  2010.  Shade avoidance: an integral component of crop-weed competition.  Weed Res.  50:281-88.

42)    Page, E.R., M. Tollenaar, E.A. Lee, L. Lukens and C.J. Swanton.  2010.  Timing, effect, and recovery from intraspecific competition in maize (Zea mays L.).  Agron. J. 102:1-7.

2009

41)    Liu, Fushan, Amina Makhmoudova, Elizabeth A. Lee, Robin Wait, Michael J. Emes, and Ian J. Tetlow. 2009. The amylose extender mutant of maize conditions novel protein–protein interactions between starch biosynthetic enzymes in amyloplasts.  Journal of Experimental Botany. 60(15):4423-4440.

40)    Page, E.R. M. Tollenaar, E.A. Lee, L. Lukens and C.J. Swanton. 2009. Does the shade avoidance response underlie the critical period for weed control in maize (Zea mays L.)?  Weed Research 49:563-571

39)    Murphy, S.E., E.A. Lee, L. Woodrow, I. Rajcan, P. Seguin, J. Kumar, and G.R. Ablett.  2009.  Association of seed and agronomic traits with isoflavone levels in soybean.  Canadian J. of Plant Sci. 89:477-484.

38)    Murphy, S.E., E.A. Lee, L. Woodrow, I. Rajcan, and G.R. Ablett.  2009.  Genotype by environment interaction and stability of isoflavone levels in multi-location soybean trials.  Crop Sci. 49:1313-1321.

37)    Lee, E.A., J.A. Young, F. Azizi, S. Jay, and A.W. Schaafsma.  2009.  Phenotypic and genotypic characterization of purple kernel streak in white food corn.  Crop Sci.  49:1235-1241.

36)    Lee, E.A., J.M. Staebler, C. Grainger, and M.E. Snook.  2009.  Robustness of QTLs across germplasm pools using a model quantitative trait.  Genome 52:39-48.

2007

35)    Lee, E.A. and M. Tollenaar.  2007.  Physiological basis of successful breeding strategies for maize grain yield.  Crop Sci. 47(S3):S202-S215.

34)    Lee, E.A. M.J. Ash, and B. Good.  2007.  Re-examining the relationship between degree of relatedness, genetic effects and heterosis in maize.  Crop Sci.  47:629-635.

2006

33)    Lee, E.A., R. Chakravarty, B. Good, M.J. Ash, and L.W. Kannenberg.  2006.  Registration of 38 maize (Zea mays L.) breeding populations adapted to short-season environments.  Crop Sci.  46:2728-2733.

32)    Tollenaar, M., and E.A. Lee. 2006.  Physiological dissection of grain yield in maize by examining genetic improvement and heterosis.  Maydica. 51:399-408.

30)    Lee, E.A., A. Singh, M.J. Ash, and B. Good.  2006.  Use of sister-lines and the performance of modified single-cross maize hybrids.  Crop Sci.  46:312-320.

2005

31)    Liu. J., E.A. Lee, M.K. Sears, and A.W. Schaafsma. 2005.  Wheat curl mite (Acari: Eriophyidae) dispersal and its relationship with kernel red streaking in maize (Zea mays  L.).  Journal of Economic Entomology.  98:1580-86.

29)    Weir, A.D., J. Omielan, E.A. Lee, and I. Rajcan.  2005.  Use of NMR spectroscopy for predicting protein concentration in soybean seeds based on oil measurements.  JOACS. 82:87-91.

28)    McNaughton, K.E., J. Letarte, E.A. Lee, and F.J. Tardif.  2005.  Several mutations in als confer herbicide resistance in redroot pigwees (Amaranthus retroflexus) and Powell amaranth (Amaranthus powellii).  Weed Sci.  53:17-22.

27)    Lee, E. A, A. Ahmadzadeh, and M. Tollenaar.  2005. Quantitative genetic analysis of the physiological processes underlying maize grain yield.  Crop Sci. 45:981-87-987.

2004

25)    Ahmadzadeh, A., E.A. Lee, and M. Tollenaar.  2004.  Heterosis for leaf CER during the grain-filling period in maize.  Crop Sci.  44:2095–2100.

26)    Tollenaar, M., A. Ahmadzadeh, and E.A. Lee.  2004.  Physiological basis of heterosis for grain yield in maize.  Crop Sci. 44:2086–2094.

24)    Lee, E.A., and L.W. Kannenberg.  2004.  Effect of inbreeding method and selection criteria on inbred and hybrid performance.  Maydica.  49:191-197.

2003

23)    Lee, E.A., T. K. Doerksen, and L.W. Kannenberg.  2003. Genetic components of yield stability in maize breeding populations.  Crop Sci. 43:2018-27.

17)    Doerksen, T.K., L.W. Kannenberg, and E.A. Lee.  2003. The impact of recurrent selection on combining ability in maize breeding populations.  Crop Sci. 43:1652-58.

21)    Diebold, R.S., K.E. McNaughton, E.A. Lee and F.J. Tardif. 2003. Multiple resistance to imazethapyr and atrazine in Powell amaranth. Weed Sci. 51:312-318.

2002

22)    McMullen, M.D., E.A. Lee, S.J. Szalma, B.S. Bushman, and M.E. Snook. 2002. The role of quantitative trait locus analysis in gene discovery.  Proc. of the 56th Annual Corn and Sorghum Research Conference. 56:237-245.

20)    Tollenaar, M., and E.A. Lee.  2002. Yield potential yield, yield stability and stress tolerance in maize. Field Crops Research. 75:161-170.

19)    Ying, J., E.A. Lee and M. Tollenaar.  2002.  Response of leaf photosynthesis during the grain-filling period of maize to duration of cold exposure, acclimation and incident PPFD.  Crop Sci. 42:1164-1172.

18)    Lee, E.A., M.S. Staebler, and M. Tollenaar.  2002. Genetic variation and physiological discriminators for cold tolerance in maize (Zea mays  L.) during an early autotrophic phase of development.  Crop Sci. 42:1919-29.

16)    Lee, E.A. and V. Harper.  2002. Suppressor of pericarp pigmentation 1 (spp1), a gene involved in phlobaphene accumulation in maize (Zea mays  L.) pericarps.  Maydica. 47:51-58.

2001

15)    McMullen, M.D., M. Snook, E.A. Lee, P.F. Byrne, H. Kross, T.A. Musket, K. Houchins, and E.H. Coe. 2001. The biological basis of epistasis between quantitative trait loci for flavone and 3-deoxyanthocyanin synthesis in maize (Zea mays L.). Genome 44:667-676.

14)    Lee, E.A., B. Good, R. Chakravarty, and L. Kannenberg. 2001. Corn inbred lines CG60 and CG62. Canadian Journal of Plant Sci. 81:453-454. 

13)    Lee, E.A., B. Good, R. Chakravarty, and L. Kannenberg. 2001. Corn inbred line CG102. Canadian Journal of Plant Sci. 81 455-456. 

2000

12)    Ying, J., E.A. Lee and M. Tollenaar. 2000. Response of maize leaf photosynthesis to low temperature during the grain-filling period. Field Crops Research. 68:87-96.

11)    Lee, E.A., B. Good, R. Chakravarty, and L. Kannenberg. 2000. CG104 and CG105 corn inbred lines. Canadian Journal of Plant Sci. 80:599-600. 

10)    Lee, E.A., B. Good, R. Chakravarty, and L. Kannenberg. 2000. CG106 corn inbred line. Canadian Journal of Plant Sci. 80:601-602.

9)      Lee, E.A., B. Good, R. Chakravarty, and L. Kannenberg. 2000. CG107 corn inbred line. Canadian Journal of Plant Sci. 80:603-604.

8)      Lee, E.A., B. Good, R. Chakravarty, and L. Kannenberg. 2000. CG108 corn inbred line. Canadian Journal of Plant Sci. 80:817-818.  (1 citation)

7)      Lee, E.A., B. Good, R. Chakravarty, and L. Kannenberg. 2000. CG109 corn inbred line. Canadian Journal of Plant Sci. 80:819-820.

1998

6)      Lee, E.A., P.F. Byrne, M.D. McMullen, M.E. Snook, B.R. Wiseman, N.W. Widstrom, and E.H. Coe. 1998. Genetic Mechanisms Underlying Apimaysin and Maysin Synthesis, and Corn Earworm Antibiosis in Maize (Zea mays L.). Genetics. 149:1997-2006.

5)      McMullen, M.D., P.F. Byrne, M.E. Snook, B.R. Wiseman, E.A. Lee, N.W. Widstrom, and E.H. Coe.  1998.  Quantitative trait loci and metabolic pathways.  Proc. Natl. Acad. Sci. USA  95(5):1996-2000.

1996

4)      Lee, E.A., E.H. Coe, and L.L. Darrah.  1996.  Genetic variation in dosage effects in maize aneuploids.  Genome  39:711-721.

3)      Lee, E.A., L.L. Darrah, and E.H. Coe.  1996.  Dosage effects on morphological and quantitative traits in maize aneuploids.  Genome  39:898-908.

Past

2)      Johal, G.S., E.A. Lee, P.S. Close, E.H. Coe, M.G. Neuffer, S.P. Briggs.  1994.  A tale of 2 mimics - transposon mutagenesis and characterization of 2 disease lesion mimic mutations of maize.  Maydica  39:69-76. 

1)      Messmer, M.M., A.E. Melchinger, M. Lee, W.L. Woodman, E.A. Lee, and K.R. Lamkey.  1991.  Genetic diversity among progenitors and elite lines from the Iowa Stiff Stalk Synthetic (BSSS) maize population: comparison of allozyme and RFLP data.  Theor. App. Genet.  83:97-107.